

Generics in Java;
A Quick and Semi-Critical Overview

Ben Munat

March 3, 2004

1. Summary

Generic types allow a single piece of code to be reused with different types inserted.
They are therefore considered a powerful tool in the never-ending quest for code
reusability. They are "so important that even a language that lacks them may be designed
to simulate them." [BOSW98] Java has long been one such language, but with the
impending release of version 1.5 – now in beta – Java has now finally joined the stable of
"generic-enabled" languages.

This paper will give a quick overview of generic types and then discuss how generic
types have been implemented in Java, including their syntax and some ways in which
they diverge from previous approaches. The design decisions forced upon Java generics
in order to retain backwards compatibility created some unfortunate quirks. These will be
illustrated in a section on the caveats of using Java generics.

2. Genericity Overview

Generic types are also known as parameterized types, and they allow a programmer to
abstract over types. [Bra04, TT99] This means that a section of code – a class, a method
or, in Java, an interface – can be defined with parametric, or unknown, type values. This
generic type (or method) is then instantiated with actual type arguments, which the
compiler inserts in the appropriate slots. This results in a fully defined type that uses the
exact component types desired by the author.

For example:

class Foo<T> {
 // do something with T
}
...
Foo<Integer> f = new Foo<Integer>();

The type variable "T" is a placeholder for some type. When the code is compiled, the T is
replaced with the type actually used, Integer in this example. This example also points
out a difference of Java generics from C++ templates: the type variable in Java cannot be
a primitive type. The primitive wrapper classes must be used.

In C++, generics are known as templates. This is because it allows one to define a
template for a section of code, into which a variety of parameter types can be inserted to
get different code. The implementation of generics in Java has turned out to have some
significant differences from C++ templates, as outlined below.

Inheritance – the core mechanism for polymorphism in Java and all object-oriented
programming languages – could also be considered a form of genericity. By using an
interface or a class higher up the inheritance hierarchy, one can be less specific about
what actual type will be used. Generic types are the converse of this. To state the
difference in a succinct manner: inheritance allows one to be type specific when
implementing a class but generic when using the class, while generics allow us to be
specific when using the type but generic when implementing it. [Qua03]

The canonical example of the benefits of using generics is collections. Currently in Java,
the collection classes are implemented as containers of class Object, the root of the Java
class hierarchy. Any subtype of Object—which includes all Java classes—may be
inserted into a container. However, in order to restore that object's class identity on
removal from the container, it must be cast. Proponents of adding genericity to Java claim
that these casts are a potential source of error. [BOWS98, BCK+03] Whether this is true
or not, it is clearly less ambiguous to specify the type of object that a collection will hold
at the time it is declared.

Here is an example provided by [Bra04]:

Without generics:

List myIntList = new LinkedList(); // 1
myIntList.add(new Integer(0)); // 2
Integer x = (Integer) myIntList.iterator().next(); // 3

With generics:

List<Integer> myIntList = new LinkedList<Integer>(); // 1’
myIntList.add(new Integer(0)); //2’
Integer x = myIntList.iterator().next(); // 3’

In the generic version, the List is declared to hold Integers. Therefore, the cast on line
three is no longer required. Besides the somewhat arguable benefits of being less prone to
error and clearer of intent, the generic version has the undeniable benefit of being
checked at compile time. The pre-generic version runs the risk of a ClassCastException at
runtime and requires the user/programmer to keep track of what type their collections
hold.

3. Java Generics vs. C++ Templates

In the interest of backwards compatibility, the creators of Java generics wanted to avoid
adding any new keywords to the language. [BOSW98, BCK+03] So, rather than use the
"template" or "typename" keywords as in C++, in Java one simply declares the generic

entity with type parameters in angle brackets, as shown above. One very nice detail
carefully considered by the Java generics implementers was the problem C++ has with
the use of a templated type with a templated type. This results in syntax similar to
"list<vector<T> >" in which the space between the two ">" symbols is necessary to
prevent the compiler to interpreting the ">>" as a right shift operator. The Java compiler
is smart enough to recognize the context of the ">>" as being a nested parameterized
type.

Beyond simple syntactic differences, there are fundamental differences in the way these
two languages implement parametric types. C++ generics are called templates for a
reason; the programmer writes a piece of code—a function, class, method, or even a
simple expression—that is templated with a placeholder for the type to be replaced.
When the program is compiled, this code can be used repeatedly but with different types
inserted for the templated parameter. This effectively means that different code is
generated, with the exact type inserted. [TT99]

In Java, the declaration of the templated type is replaced by the most general type
applicable and, in the bytecode, a cast is inserted in every instance in which the type is
used. [BCK+03] This means that generics in java do not produce different code for each
type used as a parameter. This reality has led some online programming pundits to label
Java generics as mere "syntactic sugar". This is a little extreme, however, as it belittles
the power of the constrained generics that Java offers, which will be explained next. On
the other hand, the inherent difference of approach is clearly noteworthy: C++ produces
different code based on the templated types; Java produces largely the same code
(depending on the type constraints) with behind the scenes type casting.

4. Constrained Genericity

The "constraints" referred to above are the other significant difference between C++
templates and Java generics, and are a strong factor in Java's favor. C++ has what is
known as "unconstrained genericity". [TT99] This means that its parameterized types are
simply replaced by a specified type when the templated code is instantiated. No further
processing is done on the types. It is up to the user to interpret the applicability of the
type being inserted (e.g. is a type being used in a sorted collection "comparable"). In the
"constrained" generics offered by Java (as well as previously by languages such as
Eiffel), the parameterized type may also include a constraint on its place in the type
hierarchy. For example, declaring "List<T extends Shape>" will tell the compiler to
ensure that whatever type is replaced by "T" is a subtype of Shape.

Confusingly enough, the type parameter lists does not follow the keyword conventions of
class declarations. The "extends" keyword is used for "implements" as well. So, you
wouldn't say "Vector<T implements Serializable>", but would use the "extends"
keyword instead. Additionally, since generics can be defined over more than one type,
the comma symbol has already been used to set off members in the list of parameterized
types. Therefore, if the type variable is to be constrained by more than one interface, the
'&' symbol is used instead.

Despite these potential sources of confusion, this ability to specify the type over which a
class will operate, but without being too specific, is very powerful. Java programmers are
no longer required to use impersonal containers, which treat everything as faceless
Objects. They can now not only use containers that are a bit more personable—
acknowledging that their members are of a particular class—but can also give a
collection only as much information as is needed. This is keeping in the classic Java (and
OOP) spirit of being as general and therefore polymorphic and flexible as possible.

In addition, Java generics have taken these constraints one step further, implementing
what is known as "F-bounded polymorphism". This means that it allows the type variable
to appear as part of its own bounds or as bounds of other type parameters declared in the
same section. [BCK+03] In other words, the parametric type declarations can be
recursive.

For example:

class SortedList<T extends Comparable<T>> {

 // do something with T

}

Here the type variable T is used within a parametric type that is in turn used as a
constraint on another parametric type.

 5. Wildcards

Another feature offered by the Java implementation of generics is the "?" wildcard. This
can be used in place of the type variable in a parameterized type to tell the compiler that
the type is "unknown". This is useful when the actual type is unimportant; in other words,
when the type is not going to be replaced but is merely "some" type to be worked with.

Though this single wildcard character may seem trivial and even unnecessary, there are
instances when it is indispensable. Consider a method that takes a collection as an
argument and performs some action on all members of the collection. If you merely
declare your method to work on a collection of some type T, then that collection can only
hold objects of whatever type the type variable T is replaced with. This means that the
collection argument to your print method can only take Collections of T. Thus, you've
effectively killed any polymorphic capability for that method.

This may still seem strange and rather un-Java-like. In order to understand why this
happens, consider this unexpected subtlety of generic types: the subtyping relationship of
two types used as type parameters does not carry through to the parameterized type. In
other words, if A extends B, it does not follow that SomeClass<A> is a subtype of
SomeClass. Therefore, if we pass our method a collection of a specific type, we
cannot then use this method with collections of other types, even subtypes of the original

specific type. If, however, we declare the method to take a "collection of unknown" –
written Collection<?> – we can then call this function with a collection of any type.
And, if we declare the method with Collection<? extends Sometype>, we can pass in
collections of any subtype of Sometype, therefore getting the polymorphism for which
we were originally hoping. As an example, "Vector<? extends JComponent>" would
be a vector which can hold "any type that extends JComponent".

Now, of course, nothing comes for free. The ? symbol is not translated into a specific
type, so it cannot be used in a place in which an actual type is needed. For example, our
collection of "<? extends Someclass>" cannot be written into because the actual type
is not known. A collection of unknown effectively becomes read-only; we have
exchanged writability for polymorphic behavior. We know what the upper bound of the
unknown type is, so we can read things out of the collection knowing that they are all that
type or a subtype.

The Java generics implementation also allows a wildcard to act as a lower bound, by
writing "<? super Someclass>". Interestingly enough, this offers us the ability to make
write-only collections. Knowing the lower bound of our collection means that we can put
in objects of that lower bound, or some subtype of that lower bound.

Another way of putting this is that the "<? extends …>" notation indicates a covariant
subtyping relationship, while the "<? super …>" notation expresses a contravariant
relationship. [THE+04] For example, a List<? extends Integer> is a subtype of
List<? extends Number> and Integer is a subtype of Number, so this is a covariant
relationship. Meanwhile, a List<? super Number> is a subtype of List<? super
Integer>, leading to a contravariant relationship; i.e. the types of the collections vary
inversely to the types of the arguments.

6. Another Caveat

The somewhat counterintuitive aspects of Java generics already described may seem like
enough of a potential source of confusion. There is, however, another major caveat that
comes as a result of the implementation decisions of the Java generics committee. As
mentioned earlier, it was important to Sun Microsystems and to the designers of Java
generics that adding generics to the language (and indeed adding all of the new features
in Java 1.5) not break backwards compatibility. In other words, they could not make any
changes to the Java virtual machine.

This means, as mentioned in part three above, that Java generics do not produce different
code depending on the type passed as its parameter. The desired restriction of type is
achieved by casts in the bytecode. The important consideration here is that casts do not
make for different resulting types. Therefore, a List<Integer> has the same type as a
List<String>, and if one performs reflection on them, they will find that they both have
the same run-time class. [Bra04]

The result of this intriguing detail is that generic types cannot be used in casts or with the
instanceof operator. In other words,

if (foo instanceof List<T>) {…}
and

foo = (List<T>)bar;

are illegal. Also, since generic types share the same class, they also share the same static
members; all instances of a class, regardless of the generic parameter, share the same
static methods and variables. This caused some strange quirks in earlier versions of Java
generics: ClassCastExceptions from code that contains no casts! [All03] However, in the
Java 1.5 release, it is now a compiler error to reference a generic type or a type variable
in a static context.

Another potential source of phantom ClassCastExceptions was when using generic
types as the component type of an array. The array could be declared to be an array of a
generics, but then cast to an array of Object, after which some other type could be stored
in it. Then, when later removing items from the array into a variable of the original type,
one would get the ClassCastException when removing the extraneous element. Here is an
example from [Bra04]:

List<String>[] lsa = new List<String>[10]; // not really allowed
Object o = lsa;
Object[] oa = (Object[]) o;
oa[1] = new ArrayList<Integer>(); // …passes run time store check
String s = lsa[1].get(); // run-time error - ClassCastException

Thus, regular generic types are not allowed as the component type of an array.
Unbounded wildcard generics, however, are still okay, because there is no type
information to be lost in the array's anonymity.

7. Conclusion

There are other aspects of Java generics not considered here: in particular, generic
methods and integrating legacy code with generic code. However, the major
characteristics and concerns have been covered.

In review, generic or parameterized types allow one to write a class, interface or method
using placeholders for a type, which will be replaced when the class, interface or method
is used. Different instantiations of these classes, interfaces or methods can replace the
type variable with different types. In addition, Java offers constrained generics, in that a
supertype – either a class or interface – can be specified to constrain the type variable.

Java generics also offer the "?" wildcard to represent "some unknown type", which is
useful when one does not need the actual type information and does not want to overly
restrict oneself. This wildcard character can also be constrained by the "extends" or

"super" keywords, indicating the upper or lower bound, respectively, of the unknown
type.

Being basically a "pre-compilation translation", Java generics also have some quirks.
These include sharing a common runtime type and common static members regardless of
the type variable. This means that they may not be cast or used with the instanceof
operator, and may only be used in arrays if their type variable is the unbounded wildcard.

Despite these quirks and potential conceptual difficulties, adding generic types to the
Java programming language—thus allowing collections with types more specific than
Object and allowing programmers to shuffle the responsibility for correct casting off onto
the compiler—is a welcome addition to the language. There will undoubtedly be a rough
period of transition, but in a few years, Java programmers will likely wonder how they
ever lived without generics.

[All03] Eric Allen. Diagnosing Java Code: Java Generics Without the Pain, Part 2.
available at <http://www-106.ibm.com/developerworks/java/library/j-
djc03113.html>. March 2003

[BCK+03] Gilad Bracha, Norman Cohen, Christian Kemper, Martin Odersky, David
Stoutamire, Kresten Thorup, Philip Wadler. Adding Generics to the Java
Programming Language: Public Draft Specification, Version 2.0. June 2003

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire and Philip Wadler. Making
the Future Safe for the past: Adding Genericity to the Java Programming
Language. Presented at OOPSLA 1998

[Bra04] Gilad Brach. Generics in the Java Programming Language. Tutorial available at:
<http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf> February 2004,

[THE+04] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé,
Gilad Bracha, and Neal Gafter. Adding Wildcards to the Java Programming
Language. SAC'04, March 14-17, 2004

[TT99] Kresten Krab Thorup and Mads Torgersen. Unifying Genericity: Combining the
Benefits of Virtual Types and Parameterized Classes. In ECOOP Proceedings.
Springer-Verlag, Lisbon, Portugal, June 1999

[Qua03] Matt Quail. Generic <Java> An Introduction to Generic Types in Java. PDF
presentation available at: <http://www.cjugaustralia.org/slides/generics.PDF>.
March 2003

	A Quick and Semi-Critical Overview

